Written by

More entries in

  1. 2023
  2. 2D seismic
  3. Depth imaging
  4. Machine learning
  5. Publications

Download the publication

Velocity model updates using machine learning

pdf_icon

Cameron, G.H., 2023, PSDM velocity model building using a Deep Convolutional Neural Network, CSEG Recorder.

Building PSDM velocity models in complex structure land environments is difficult. A machine-learning method using a convolutional neural network (CNN) incorporates both human and artificial intelligence to overcome these difficulties. The supervised learning process used a large representative dataset to train the CNN, learning the convolutional weights that best map the input seismic shot records to the target velocity model. With careful consideration of both training data and network architecture, the CNN can accurately predict velocity models on both synthetic and field data.

Discussion

No comments so far

Written by

More entries in

  1. 2022
  2. 2D seismic
  3. Anisotropy
  4. Depth imaging
  5. Machine learning
  6. Publications

Download the publication

APGCE 2022: Convolutional neural networks to augment PSDM velocity model building

pdf_icon

Cameron, G.H. and Vestrum, R.W., 2022, Convolutional neural networks to augment PSDM velocity model building, APGCE Conference, Kuala Lumpur, Malaysia

  • Built convolutional neural network (CNN) to estimate TTI PSDM velocity models from shot gathers
  • Traditional automated methods for PSDM velocity estimation in complex-structure land areas are unstable, so we rely on the human understanding of the geology to build geologic models
  • The goal is to use machine learning to supplement human learning
  • Field-data example shows imaging improvements on certain shallow reflectors, which shows the potential of the method

Poster presentation

Greg presents poster in Kuala Lumpur

Discussion

No comments so far