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Abstract 
Building PSDM velocity models in complex structure land environments is difficult. A machine-
learning method using a convolutional neural network (CNN) incorporates both human and 
artificial intelligence to overcome these difficulties. The supervised learning process used a 
large representative dataset to train the CNN, learning the convolutional weights that best map 
the input seismic shot records to the target velocity model. With careful consideration of both 
training data and network architecture, the CNN can accurately predict velocity models on both 
synthetic and field data. 

Introduction 
Convolutional neural networks have been successfully used for many tasks, from computer 
vision to natural language processing. Seismic data, with its spatial and temporal dimensions, 
lends itself to applications using CNNs. In this paper, I propose a method using a CNN to 
predict PSDM velocity models in complex structure land environments (see Figure 1). 

Figure 1. Mapping seismic shot records to velocity model using a deep convolutional neural network 

It is challenging to build PSDM velocity models in complex structure land environments. We 
often have a lack of geological constraints, including limited well information and an incomplete 
understanding of the subsurface geometry. The seismic data acquired in these areas tends to 
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be sparse due to environmental and economic constraints. The data often contain high levels of 
noise and poor frequency bandwidth. This is due to the complex near-surface, which causes 
many distortions to the seismic data. Given these challenges, automated methods such as 
reflection tomography and full waveform inversion struggle in these environments. My objective 
was to see if a CNN-based method could achieve better results. 

This method requires three steps as follows: 

1. Build a large set of velocity models, incorporating geological structures one would expect 
to encounter in foothills environments. 

2. Create synthetic seismic data over these velocity models using TTI acoustic finite 
difference modeling. 

3. Train the CNN, predicting the velocity model from the synthetic seismic data. Once the 
neural network is trained, it can be used to predict velocity models on other synthetic and 
field data. The workflow is shown in Figure 2. 

Training Data 
This method relies on a large, representative dataset to 
train the CNN. Drawing from experience in complex-
structure land environments, 3000 unique velocity 
models were created. These models were created 
automatically, each containing velocities, dips, and faults  
typical of foothills settings. I kept 20 models separate 
from the training process to be used to evaluate the 
CNN after the training was complete. Including the 
reciprocals of the remaining 2980 models resulted in 
5860 training samples along with 100 validation 
samples.  

Each model contains many layers of variable thickness 
and velocity. These layers follow a dipping sinusoidal 
shape with variable dips, periods, and amplitudes. The 
models contain a number of listric faults with variable 
dips, curvatures, and orientations. Each model also 
contains uniquely variable topography and near-surface 
velocity to represent the weathering layer typically 
observed in these environments. Figure 3 shows one of the models. 

Figure 2. CNN velocity model prediction 
workflow 
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Figure 3. One of 3000 velocity models created automatically using realistic subsurface parameters 

As they are created with random variables, the individual models may not look geologically 
plausible. However, collectively they are representative of the characteristics of subsurface 
features we expect to see in the field. This provides the CNN a rich training dataset to learn 
from, allowing it to predict accurate models from new synthetic data it has not seen before. If the 
training data captures the variety of data seen in the field, the CNN will also be able to predict 
velocities on field data. Figure 4 shows the first 30 training models. 

 

Figure 4. 30 velocity models created automatically using realistic subsurface parameters 

The input to the CNN is seismic shot records. For each velocity model a set of shot records was 
created using proprietary TTI acoustic modeling software written using the open-source Devito 
library. Thomsen’s anisotropic parameters (Thomsen, 1986), epsilon and delta, were held 
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constant at 0.12 and 0.03 respectively and the dips were defined parallel to bedding. Each 
model used the same sparse acquisition geometry, with shot spacing of 64m and receiver 
spacing of 36m. Offsets were limited to 4300m. This geometry mimics the geometry of the field 
data that was used to evaluate the method. Each of the 3000 models has 144 source locations, 
giving a total of 432,000 shots. 

Figure 5 shows the test model with a wavefield snapshot overlaid along with a shot acquired in 
the middle of the line. The shot record exhibits high complexity in its reflectivity, due to the 
complex topography and near surface velocity. This gives the shot record a realistic 
appearance. Also, note the high-amplitude near-offset noise that was caused by numerical 
dispersion. The wavefield propagation parameters were not fine enough for the very low near-
surface velocity. Creating these shots with the parameters required to minimize this noise 
resulted in a ~10× increase in runtime. As a tradeoff, it was decided to allow the distortion to 
remain in the dataset. It could be considered to represent noise observed on field data, such as 
ground roll or s-wave arrivals. 

 
Figure 5. Wavefront propagation through synthetic velocity model (a) and associated shot record (b) 

While the shot record has some of the complexity we expect to see in the field, it lacks the 
wavelet distortion, dispersion effects, and ambient noise we typically observe on field seismic 
data. Noise was added to our shot records to mimic these effects in two steps. First, each trace 
was convolved with a unique operator that modelled wavelet distortion and dispersion. Then  a 
variable amount of ambient noise was added to each trace. Figure 6 shows the effects of the 
added noise on the test shot. The added noise is not related to the model, so the CNN did not 
learn anything about the velocities from the noise. However, as noise is present in our field data, 
the CNN will learn to predict velocities in the presence of noise. The CNN was trained on both 
the clean and noisy data to evaluate its effect on both synthetic and field data. Now that the 
training data is defined, we can turn our attention to the neural network. 
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Figure 6. Synthetic shot record without (a) and with (b) noise added 

 

CNN Architecture 
Convolutional neural networks vary in size and shape but all have the same objective: to learn 
the convolutional weights (features) that best map an input to a target. In this case, the input is a 
set of seismic shot records and the target is the velocity model. 

The CNN designed for this experiment follows a U-net architecture, as shown in figure 7. The 
shot records are input on the left of the network and pass through several types of layers before 
predicting the target velocity model. The convolutional layers each map the input to output 
through a set of 3×3 convolutions. The max pooling layers reduce the dimensionality of the data 
by selecting the maximum value from each 2×2 samples. The transpose convolutional layers 
are similar to the convolutional layers but also expand the data by a factor of 2×2. This 
architecture allows the network to learn larger scale features as it progresses deeper in the 
network before expanding back to the resolution of the velocity model. There are also skip 
connections, which allow finer resolution features to skip a portion of the network. This provides 
a higher resolution output and generally improves the training. 
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 Figure 7. CNN U-net architecture 

A RELU activation function was used for each of the convolutional layers to introduce 
nonlinearity into the network. The network was trained with back propagation using stochastic 
gradient descent. The training minimizes the mean-squared error (MSE) between the predicted 
and target velocity models. 

Several different CNN structures were evaluated and it was observed that that modifying the 
data structure improved the performance of the network. The initial architecture was based on a 
CNN described by Yang and Ma (2019). They propose each input shot being treated as its own 
channel, resulting in the number of input channels equal to the number of shots. This is 
analogous to how RGB images are typically handled in a CNN, with each colour being a 
separate channel. An example showing the first few layers of this architecture is shown in figure 
8a. In this simple example, there are input 3 shots and 8 convolutions per layer. Once the two 
convolution layers are complete, the data are passed to the next convolutional layer through a 
max pooling layer and also passed across the network using a skip connection. 

The modification made to this architecture is shown in figure 8b. The entire set of shot records is 
treated as a single channel, adding a third dimension to the input data. As with the original 
network there are 8 convolutions per layer, this time resulting in 8 filter maps for each shot. As 
before, the data are passed to the next convolutional layer through a max pooling layer. 
However, when using a skip connection to pass the data across the network we first need to 
reduce the data to 2 dimensions per filter map. This is achieved using a global max pooling 
layer, which assigns the maximum value from all shots for each sample to create a single set of 
filter maps. 
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 Figure 8. Original (a) and updated (b) U-net architecture 

The above modification to the CNN resulted in much better velocity model predictions. There 
are several reasons for this. In the original CNN, the shots are combined into a single set of filter 
maps after the first convolutional layer. This results in more difficult feature extraction in 
subsequent convolutions. In the modified CNN, the shots are not mixed until they are passed to 
the right side of the network, using the global max-pooling layer. Also, with the original 
architecture, the first layer learns independent features for each shot. In the modified CNN, the 
features are shared between the shots. This results in more general features being learned, 
which stabilizes the training process. The global max-pooling layer extracts the most important 
features. This should improve the training, particularly for complex and noisy data. Finally, the 
modification allows the CNN to handle a variable number of shots. The number of weights  
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trained in a CNN is dependent on the number of input channels. By removing this dependency, 
the CNN can be evaluated on a different number of shots than it was trained on. 

The disadvantages of the modified CNN relate mainly to efficiency. For a given input there is 
more data passing through the network. This results in fewer features being learned (given 
limited GPU memory) and longer training time. In this example, the network learned half of the 
features and the training took twice as long. Given the uplift in results, this is a reasonable 
trade-off. 

4 CNNs were trained, using the clean and noisy training data for each of the original and 
modified CNN architectures. Each CNN was trained over 30 epochs (passes through the 
training data). The velocity was predicted over the area of source and receiver coverage to 
3000m below surface as training any deeper reduced the accuracy of the results. 

Results – synthetic data 
Figure 9 compares the true model to the predicted model from each of the 4 CNNs. Figure 9a is 
the target model. Figure 9b and 9c show the predicted models using the clean shot records as 
inputs to the original and updated CNN. Figure 9d and 9e show the predicted models using the 
noisy shot records as input. The best prediction is using the clean shot records as input to the 
updated CNN. All 4 predictions show reasonable estimates of the first few hundred meters 
below the surface. The original CNN shows a poor prediction below the strong velocity 
inversion, particularly when using the noisy input. The updated CNN shows good predictions of 
the major velocity boundaries over most of the model, with the clean-shot-record version 
producing a slightly better result. It is interesting that 9c and 9e are so similar given the amount 
of noise added for the training of 9e. This suggests that the CNN is still able to extract useful 
features despite the noise. Also, note that none of the CNNs predicted the high velocity in the 
footwall of the thrust fault more than 1 km deep. Looking more closely at the synthetic data, the 
limited acquisition and strong velocity inversion in the shallow model likely prevent the 
illumination of the fault plane reflector. 
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Figure 9. Comparison of true model vs predictions with different CNNs 

Results – field data 
Once satisfied with the predictions on synthetic data, the CNN was tested on field data. I 
evaluated the 4 CNNs on a 2D line from the foothills of the Llanos basin in Colombia. Figure 10 
shows a selection of shot records from west to east over this line. The data quality is variable, 
with higher noise content to the west. The best velocity prediction was obtained using 

 
Figure 10. Shot records from Colombian 2D line 

the CNN with the noisy input and modified architecture. This is shown in Figure 11a.  We have 
processed this line through PSDM several times and the predicted model agrees with our 
understanding of the subsurface geometry. The location of the major faults, anticlines, and 
synclines are shown on the model. Additionally, the shallow velocities are similar to those 
generated by first arrival tomography, shown in Figure 11b.
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Figure 11. Predicted velocity model (a) and first arrival tomography model (b) 

Both the location of the structural 
features and the similarity to the first-
arrival tomography model suggest this 
is a reasonable prediction of subsurface 
velocities. Figure 12 shows the 
predicted velocities using the 4 trained 
CNNs. Both the addition of noise to the 
training data and the modification to the 
network architecture have improved our 
prediction on the field data. 

Conclusions and future work 
This deep learning method for velocity 
model prediction consists of three 
primary components. The first is a set of 
many representative training models. I 
used our experience in processing 
complex structure data to produce 
training models with the ranges of 
velocities, dips, and faults one would 
expect in the field. The second 
component is accurate synthetic seismic data. Using proprietary TTI finite-difference forward-
modeling code, synthetic shot records were created from each of our training models. We 

Figure 12. Predicted velocity model using 4 different CNNs: (a) 
original CNN, clean training data, (b) original CNN, noisy training 
data, (c) modified CNN, clean training data, (d) modified CNN, 
noisy training data 
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added noise that is typical of data we observe in the field. The final component, a tuned neural 
network, was created using a modified U-net architecture to optimize the results. 

The results on synthetic test data were very promising, with the CNN accurately predicting 
velocities to several kilometres below the surface. The results were encouraging on the 
Colombian field data example. More work is needed to verify these results by migrating with 
these velocities. 

Since completing this work, I have modified the workflow, using image data rather than raw shot 
records as input to the CNN. This provides several advantages. It allows for an iterable process, 
where the predicted velocity model can be used to migrate the data for input to the next 
iteration. Both input and target are in depth, allowing the required convolutions to be more local. 
I am also evaluating ways to quantify the uncertainty in the velocity model predictions. 

Convolutional Neural Networks offer an alternative to traditional seismic data processing 
methods. In addition to velocity prediction, CNNs are being developed for interpolation and 
noise attenuation of seismic data. These methods all require a good understanding of 
geophysics to build representative training data as well as neural networks to optimize the CNN. 
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