Written by

More entries in

  1. 2022
  2. 2D seismic
  3. AAPG
  4. Anisotropy
  5. Colombia
  6. Depth imaging
  7. Publications

Watch the video

AAPG ICE 2022: Structural Styles: Challenges in Seismic Imaging

Vestrum, R.W., and Cameron, G.H., 2022, Structural Styles: Challenges in Seismic Imaging, AAPG ICE 2022, Cartagena, Colombia

This presentation develops the themes presented in Chapter 2 of the AAPG publication, Andean Structural Styles: A Seismic Atlas. Seismic data in areas like the Andes have unique challenges that break traditional seismic-imaging methods designed for offshore exploration. Reducing exploration risk in these basins requires a workflow tailored to the geologic setting. The under-constrained nature of the seismic data requires tight integration with the structural geologist.

Seismic imaging is a vital tool for mapping the complex geologic structures of the Andes. The method of imaging the Earth’s subsurface with seismic waves is powerful, and it has certain limitations—especially when deployed in complex-structure land areas like the mountain ranges and high plains of the Andes. Understanding the technologies involved and how they are applied to this specific geologic setting will improve our understanding of the risks and uncertainties involved in the interpretation of structures on seismic images.

Seismic data in thrust-belt environments are typically low data density and have low signal-to-noise ratios, all while attempting to image complex geologic structures. The data are acquired over rough topography with laterally varying velocities from the surface down. If the near surface is the lens through which we image the subsurface, our lens is bumpy and distorted. These are the challenges of seismic processing in fold thrust belts, and decades of technology development has gone into facing those challenges, from weathering corrections for the near-surface, to advance migration algorithms that can image below major thrust faults.

Discussion

No comments so far

Written by

More entries in

  1. 2019
  2. 2D seismic
  3. AAPG
  4. Anisotropy
  5. Case history
  6. Colombia
  7. Depth imaging
  8. Peru
  9. Publications

Download the publication

AAPG ICE 2019: Geologically constrained seismic imaging in Andean thrust belts

pdf_icon

Vestrum, R.W., 2019, Geologically Constrained Anisotropic Depth Imaging in Andean thrust belts, AAPG ICE, Buenos Aires.

  • Seismic data in structured land areas have severe limitations
  • Geologic interpretation and human collaboration can overcome these limitations
  • Examples from Colombia and Peru show how we resolve these issues through geoscience collaboration
  • Increased accuracy of an imaging algorithm also means increased sensitivity: PSTM → PSDM → RTM

Discussion

No comments so far

Written by

More entries in

  1. 2016
  2. AAPG
  3. Anisotropy
  4. Depth imaging
  5. Modelling
  6. Publications

Download the publication

AAPG ICE Barcelona 2016: Impact of a tightly folded anisotropic layer on imaging in Papua New Guinea – a modelling study

pdf_icon

Cameron, G.H., Gillam, D., and Vestrum, R.W., 2016, Impact of a tightly folded anisotropic layer on imaging in Papua New Guinea – a modelling study. AAPG ICE, Barcelona, Spain.

  • FD acoustic anisotropic modelling quantifies the imaging problem resulting from tight folds in the near surface
  • TTI PSDM is sensitive to the model dip
  • Surface-geology measurements helped constrain model dip

Discussion

No comments so far